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REAL OPTION VALUE  

CHAPTER 14 B      INCENTIVE OPTIONS             17 Feb 2017 

 

Incentive options can be viewed using the toolkit implicit in previous chapters of real payoff diagrams, 

entry and exit options, and perpetual American puts and calls.  Incentive options may be granted (or 

required by) governments to encourage early investment in “desirable” projects such as renewable 

energy facilities, infrastructure investments like roads, bridges and other transportation, and in general 

public-private partnerships (PPP) governing new facilities like schools, hospitals, and recreation areas.  

These incentive options are classified as (i) proportional revenue (or price and/or quantity) subsidies, 

where the market price and/or the quantity of production is uncertain or low, but the subsidy is 

proportional to the quantity produced (ii) supplementary revenue (or price and/or quantity) subsidies, 

where the market price and/or the quantity of production and/or the exogenous subsidy is uncertain (iii) 

revenue floors and ceilings, where the subsidy is related over time to the actual quantities produced or 

market prices. Examples of (i) are so-called Feed-in-Tariffs “FiT” which are fixed amount subsidies per 

unit production, (ii) renewable “green” certificates, which have an uncertain value but are usually 

allocated per unit of production, and (iii) government minimum revenue guarantees, sometimes 

accompanied by maximum revenue ceilings.     

In addition, governments provide incentives in the form of free or at low cost assets (sport stadiums), 

protection through tariffs, quotas or security, in order to encourage “desirable” activities, or investment 

cost reliefs, consisting of direct grants and soft loans, tax credits or excess depreciation.  Although not 

directly considered herein, some of these incentives can be evaluated in terms of the real option value 

compared to that paid to the government (taxes, concession and user fees and royalties) weighted 

against the immediate or eventual cost for the government.  It is interesting to study the effect of 

incentives on the real option value, and on the threshold that justifies immediate investment, as price, 

quantity and subsidies change.  Who gets/gives what, when, how, and why are almost always critical 

considerations in incentive options.  

14.1 Subsidies & Revenue Limits 

The real American collar option for a certain asset confines the effective price within specified floor 

(lower) and ceiling (upper) limits. Acting as a risk moderator, the collar offers protection against the 
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adversity from extreme falls in the output price or rises in the procurement price while simultaneously 

extracting some incremental value from favorable prices. Consequently, the upside gains partially 

compensate the downside losses. Unlike financial options, real American perpetuities on specific 

projects  are currently not obtainable from the market, but governments may be agreeable to grant and 

underwrite price limits in certain circumstances. The pursuance of an energy diversity goal may motivate 

governments to enact a policy that subsidizes renewable energy investors by guaranteeing a fixed price 

in the form of a contract-for-differences deal.  Similarly, foreign investors are induced to locate in 

countries whose governments grant subsidized or preferential procurement prices for raw materials or 

energy. The role of these subsidies is to raise the investment option value and to reduce the investment 

threshold, which not only render an investment more attractive but also hasten its exercise.  

In a real option framework, there are several articles on the effect of a subsidy on the investment value 

and policy.  Boomsma et al. (2012) evaluate energy subsidies. Adkins and Paxson (2015, 2016A) consider 

permanent and retractable subsidies as do Boomsma and Linnerud (2015), but not revenue ceilings.  

Takashima et al. (2010) design a PPP deal involving government debt participation that incorporates a 

floor on the future maximum loss level, where the concessionaire has the right to sell back the project to 

the government whenever adverse conditions emerge.  Armada et al. (2012) investigate a subsidy in the 

form of a perpetual put option on the output price with protection against adverse price movements.   

Adkins and Paxson (2016B) consider perpetual collar options in PPPs. From a general model, separate 

price floor subsidies and price ceilings are specific examples of general collar options imposed on the 

active project value.  A price collar option contributes both positively and negatively to the active 

project value, and also to the real option value of an opportunity to invest in such a project.  

14.2 Real Collar Option for an ACTIVE Asset 

Suppose a firm in a monopolistic setting confronts a single source of uncertainty due to revenue 

variability, and ignoring operating costs and taxes, the opportunity to invest in an irretrievable project at 

cost K depends solely on the revenue evolution, which is specified by the geometric Brownian motion 

process: 

 dR d dR t R W     (1) 

where   denotes the expected revenue risk-neutral drift,   the revenue volatility, and dW  an 

increment of the standard Wiener process.  
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A collar option is designed to confine the revenue for an active project to a tailored range, by 

restricting its value for the project owner to lie between a floor 
LR  and a ceiling HR , where 

typically the government granting the concession guarantees the floor and receives all R over the 

ceiling. Whenever R falls below the floor, the received R is assigned the value 
LR , and whenever 

it exceeds the ceiling, it is assigned the value 
HR . Protection against downside losses for the 

owner are mitigated in part by sacrificing upside gains. The value of a project with a perpetual 

net revenue R is R/, where  is the yield for a similar risky project. Using contingent claims 

analysis, for an active project with a collar, the revenue accruing to the owner is given by 

    min max ,C L HR R R R  and its value 
CV  is described by the risk-neutral valuation 

relationship: 

    
2

2 21
2 2

0C C
C C

V V
R r R rV R

R r
  

 
    

 
.  (2) 

where r   denotes the risk-free interest rate and r    the rate of return shortfall, or net 

asset yield. The generic solution to the option part of (2) is: 

   1 2

1 2V R A R A R
 

    (3) 

where 
1 2,A A  are to be determined generic constants and 

1 2,   are, respectively, the positive and 

negative roots of the fundamental quadratic equation, which are: 

 

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       
   

  (4) 

In (3), if 
2 0A   then V is a continuously increasing function of R and represents an American 

perpetual call option, Samuelson (1965), while if 
1 0A   then it is a decreasing function and 

represents an American put option, Merton (1973).  

The subscript C  denotes the with-collar arrangement, and the valuation function for the owner of 

an active project is: 
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
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 




    



 
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  (5) 

In (5), the first numerical subscript for a coefficient denotes the regime  1 ,2 ,3I II III   , 

while the second denotes a call if 1 or a put if 2. The coefficients 
11 22,C CA A  are expected to be 

positive because the owner holds the options and a switch is beneficial. In contrast, the 

21 32,C CA A  are expected to be negative because the owner has “written” the options and is being 

penalized by the switch. The real collar is composed of four call and put options. A switch in 

either direction between Regimes I and II occurs when 
LR R . It is optimal provided the value-

matching relationship: 

 1 1 2

11 21 22
L

C C C

R R
A R A R A R

r

  


      (6) 

and its smooth-pasting condition expressed as: 

 1 1 2

1 11 1 21 2 22C C C

R
A R A R A R

    


     (7) 

both hold when evaluated at 
LR R . Similarly, a switch in either direction between Regimes II 

and III occurs when 
HR R . It is optimal provided the value-matching relationship: 

 1 2 2

21 22 32
H

C C C

RR
A R A R A R

r

  


      (8) 

and its smooth-pasting condition expressed as: 

 1 2 2

1 21 2 22 2 32C C C

R
A R A R A R

    

     (9) 

both hold when evaluated at 
HR R . This reveals that: 
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  (10) 

14.3 Revenue Floor Model 

The additional subscript f  indicates a model with only a floor. From (5) the active project 

valuation function becomes: 

  

1

2

11

22

         for R

   for R ,

L
Cf L

Cf

Cf L

R
A R R

r
V R

R
A R R








 

 
  


  (11) 

with:  
 

 

 

 1 2

2 2 1 1

11 22

1 2 1 2

0, 0.
L L

Cf Cf

L L

R r r R r r
A A

R r R r
 

   

     

     
   

 
  (12) 

14.4 Ceiling Only Model  

The additional subscript c  indicates a model with only a ceiling. The active project valuation 

function is: 

  

1

2

21

32

   for 

           for ,

Cc H

Cc

H
Cc H

R
A R R R

V R
R

A R R R
r








 

 
  


           (13) 

with: 

 
   1 2

2 2 1 1
21 32

1 2 1 2

0, 0H H
Cc Cc

H H

R r r R r r
A A

R r R r
 

   

     

   
   

 
.    (14) 

 

14.5 Numerical Illustrations 
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Suppose the current net revenue is 10 with a volatility of 20%, no operating costs, and r==4%. 

Figure 1 shows that if the owner has obtained a guarantee in perpetuity at RL=5, with a ceiling 

RH=15, the ROV of operating such a perpetual activity is (5), while without a collar the present 

value is VC PV=R/ =250 (cell B12). With a collar, the VC=ROV=250-55.56 call plus 20.83 

put=215.28 (cell B11).                                          Figure 1  
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ACTIVE PPP WITH COLLAR
INPUT EQ

R 10.00

  

 0.20

r 0.04

 0.04

RL 5

RH 15

OUTPUT

VC 215.2778 IF(B3<$B$8,$B$8/B6+B16,IF(B3>$B$9,$B$9/B6+B19,B3/B7+B17+B18)) 5

VC PV 250.0000 IF(B3<B8,B8/B6,IF(B3>B9,B9/B6,B3/B7)) 5

R/ 250.0000 B3/B7  

1 2.0000 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

2 -1.0000 0.5-(B6-B7)/(B5^2)-SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4
AC11*R^1 111.1111 B21*(B3^B14)  
AC21*R^1 -55.5556 B22*(B3^B14)  
AC22*R^2 20.8333 B23*(B3^B15)  
AC32*R^2 -166.6667 B24*(B3^B15)  

VC 215.2778 B12+B17+B18  

AC11 1.1111 (B9/(B9^B14)-B8/(B8^B14))*(B25/B27) 10

AC21 -0.5556 (B9/(B9^B14))*(B25/B27) 10

AC22 208.3333 (-B8/(B8^B15))*(B26/B27) 10

AC32 -1666.67 (B9/(B9^B15)-B8/(B8^B15))*(B26/B27) 10

[      ] -0.0400 (B6*B15-B6-B7*B15) 10

(     ) -0.0400 (B6*B14-B6-B7*B14) 10

{      } 0.0048 (B14-B15)*B6*B7 10

   

ODE 0.0000 0.5*(B5^2)*(B3^2)*B31+(B6-B7)*B3*B30-B6*B11+MIN(MAX(B8,B3),B9) 2

VC D 11.8056  

VC G -0.6944  

VC D IF(B3<B8,B14*B21*(B3^(B14-1)),IF(B3>B9,B15*B24*(B3^(B15-1)),1/B7+B14*B22*(B3^(B14-1))+B15*B23*(B3^(B15-1))))

VC G IF(B3<B8,B14*(B14-1)*B21*(B3^(B14-2)),IF(B3>B9,B15*(B15-1)*B24*(B3^(B15-2)),B14*(B14-1)*B22*(B3^(B14-2))+B15*(B15-1)*B23*(B3^(B15-2))))

VC D

IF(B3<B8) 22.2222 B14*B21*(B3^(B14-1))

IF(B8<B3<B9) 11.8056 1/B7+B14*B22*(B3^(B14-1))+B15*B23*(B3^(B15-1))

Decomposition

IF(B8<B3<B9) 25.0000 1/B7

IF(B8<B3<B9) -11.1111 B14*B22*(B3^(B14-1))

IF(B8<B3<B9) -2.0833 B15*B23*(B3^(B15-1))  

IF(B9<B3) 16.6667 B15*B24*(B3^(B15-1))
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With only a floor guarantee at RL=5 using (11), the VCf=ROV=250+20.83=270.83 illustrated in 

Figure 2.    

Figure 2 
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ACTIVE PPP WITH FLOOR ONLY
INPUT EQ

R 10.00

  

 0.20

r 0.04

 0.04

RL 5

  

OUTPUT

VCf 270.8333 IF(B3<B8,B8/B6+B16,B3/B7+B18) 11

VCf PV 250.0000 IF(B3<B8,B8/B6,B3/B7) 11

R/ 250.0000 B3/B7  

1 2.0000 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

2 -1.0000 0.5-(B6-B7)/(B5^2)-SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4
ACf11*R^1 166.6667 B21*(B3^B14)  

    
ACf22*R^2 20.8333 B23*(B3^B15)  

     

    

ACf11 1.6667 (-B8/(B8^B14))*(B25/B27) 12

    

ACf22 208.3333 (-B8/(B8^B15))*(B26/B27) 12

    

[      ] -0.0400 (B6*B15-B6-B7*B15)  

(     ) -0.0400 (B6*B14-B6-B7*B14)  

{      } 0.0048 (B14-B15)*B6*B7  

   

ODE 0.0000 0.5*(B5^2)*(B3^2)*B31+(B6-B7)*B3*B30-B6*B11+MIN(MAX(B8,B3))  

VC D 22.9167 IF(B3<B8,1/B6+B14*B21*(B3^(B14-1)),1/B7+B15*B23*(B3^(B15-1)))

VC G 0.4167 IF(B3<B8,(B14-1)*B14*B21*(B3^(B14-2)),(B15-1)*B15*B23*(B3^(B15-2)))

VC D

IF(B3<B8) 33.3333 B14*B21*(B3^(B14-1))

IF(B8<B3 22.9167 1/B7+B15*B23*(B3^(B15-1))

Decomposition

IF(B8<B3 25.0000 1/B7

IF(B8<B3 -2.0833 B15*B23*(B3^(B15-1))
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With only a ceiling, the VCc=ROV=194.44, which is 250 less 55.56. These results are very 

sensitive in changes in most of the parameter values. 

Figure 3 
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ACTIVE PPP WITH CEILING ONLY
INPUT EQ

R 10.00

  

 0.20

r 0.04

 0.04

  

RH 15.0000

OUTPUT

VCc 194.4444 IF(B3<B9,B3/B7+B17,B9/B6+B19) 13

    

R/ 250.0000 B3/B7  

1 2.0000 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

2 -1.0000 0.5-(B6-B7)/(B5^2)-SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

    
ACc21*R^1 -55.5556 B22*(B3^B14)  

    
ACc32*R^2 -187.5000 B24*(B3^B15)  

    

    

ACc21 -0.5556 (B9/(B9^B14))*(B25/B27) 14

    

ACc32 -1875.00 (B9/(B9^B15))*(B26/B27) 14

[      ] -0.0400 (B6*B15-B6-B7*B15)  

(     ) -0.0400 (B6*B14-B6-B7*B14)  

{      } 0.0048 (B14-B15)*B6*B7  

   

ODE 0.0000 0.5*(B5^2)*(B3^2)*B31+(B6-B7)*B3*B30-B6*B11+MAX(MIN(B3,B9))  

VC D 13.8889 IF(B3<B9,1/B7+B14*B22*(B3^(B14-1)),1/B6+B15*B24*(B3^(B15-1)))

VC G -1.1111 IF(B3<B9,(B14-1)*B14*B22*(B3^(B14-2)),(B15-1)*B15*B24*(B3^(B15-2)))

VC D

IF(B3<B9) 13.8889 1/B7+B14*B22*(B3^(B14-1))

Decomposition

IF(B3<B9) 25.0000 1/B7

IF(B3<B9) -11.1111 B14*B22*(B3^(B14-1))

IF(B9<B3 18.7500 B15*B24*(B3^(B15-1))
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Note that the differential equation (2) is solved (B29), calculating the ROV deltas and gammas in B30 and 

B31.  Further discussion of ROV “Greeks” is in the Appendix.  

14. 6 Investment Option with a Collar 

The value of a perpetual opportunity to invest in a project with a stochastic revenue and fixed 

investment cost is a fundamental equation in the literature of real options. The without-collar optimal 

price threshold level triggering investment 0R̂  is: 

 1
0

1

ˆ
1

R K








 , (15) 

and the value function is:  

1

0

1 0
0

0

ˆfor
ˆ1

ˆfor R ,

K R
R R

RF R

R
K R







  
  
    

  


           (16) 

with:     
1

0
0

1

ˆ
.

1

KR
A










                                (17) 

The with-collar optimal price threshold ˆ
CR  triggering an investment lies between the floor and cap 

limits, ˆ
L C HR R R  . When ˆ

L C HR R R  , the optimal solution is obtained from equating the 

investment option value with the active project net value at the threshold ˆ
CR R .  The optimal 

solution is determined from both the value-matching relationship: 

 1 1 2

0 21 22C C C

R
A R A R A R K

  


      (18) 

and its smooth-pasting condition expressed as: 

 1 1 2

1 0 1 21 2 22  C C C

R
A R A R A R

    


     (19) 

when evaluated for ˆ
CR R . This reveals that: 

 21 1 2
22

1 1

ˆ
ˆ

1 1

C
C C

R
K A R

  

  


 

 
  (20) 
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   1

0 2 2 21

1 2

ˆ1 ˆ1 .C
C C C

R
A K R A

 
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
 

    
  

  (21) 

The absence of a closed-form solution requires ˆ
CR  to be solved numerically from (20), and 

0CA  from 

(21).   The investment option value  0CF R  for the project, is: 

  

1

1 2

0

0

21 22

ˆ                  for 

ˆ   for ,

C C

C

C C C H

A R R R

F R R
K A R A R R R R



 



 


 
    



  (22) 

Figure 4 
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INVESTMENT OPPORTUNITY FOR A PPP WITH A COLLAR OPTION 
INPUT EQ

R 6.00

K 100.00

 0.25

r 0.04

 0.04

RL 4

RH 10
OUTPUT

ROV CALL 61.8978 IF(B3<B13,((B4/(B14-1))*(B3/B13)^B14),B12) 16

R/-K 50.0000 MAX(B3/B7-B4,0)  

R^ 9.4279 (B14/(B14-1))*B4*B7 15

1 1.7369 0.5-(B6-B7)/(B5^2)+SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

A0 2.7547 (B4*(B13^-B14))/(B14-1) 17

   

ROV COLLAR 38.3688 IF(B3<B20,B21*(B3^B14),B3/B7-B4+B23*(B3^B14)+B24*(B3^B18))22

2 -0.7369 0.5-(B6-B7)/(B5^2)-SQRT(((B6-B7)/(B5^2)-0.5)^2 + 2*B6/(B5^2)) 4

FIND R^ 0.0000 B20/B7-(B14/(B14-1))*B4+((B14-B18)/(B14-1))*B24*(B20^B18) 20

R^ 4.0000 SOLVER Set B19=0, changing B20

AC0 1.7862 (1/(B14-B18))*((1-B18)*(B20/B7)+B18*B4)*(B20^-B14)+B23 21

    

AC21 -1.8520 ($B$9/($B$9^B14))*(B26/B28) 10

AC22 112.2797 (-$B$8/($B$8^B18))*(B27/B28) 10

    

[      ] -0.0400 (B6*B18-B6-B7*B18) 10

(     ) -0.0400 (B6*B14-B6-B7*B14) 10

{      } 0.0040 (B14-B18)*B6*B7 10

 

AC21*R^1 -41.6129 B23*(B3^B14) RL<R<RH

AC22*R^2 29.9818 B24*(B3^B18)
ROV COLLAR 38.3688 B12+B30+B31
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As shown in Figure 4, the threshold ˆ
CR  depends only on the floor LR   through 22CA , but not on the 

ceiling HR . Adjusting the ceiling of the collar has no material impact on the threshold, so the timing 

decision is affected by the losses foregone by having a floor but not by the gains sacrificed by having a 

ceiling. Since 22CA  is non-negative, the with-collar threshold ˆ
CR  is always no greater than the without-

collar threshold 0R̂ , and an increase in the floor produces an earlier exercise due to the reduced 

threshold level.  

Figure 4 shows that with a floor of 4 and ceiling of 10, and the other parameter values, the option 

coefficients AC21 and AC22 are -1.8520 and 112.2797, so the ROV COLLAR is 38.4 when RL<R<RH, less than 

the ROV without collar 61.9.  Cell B31 shows that the ROV (COLLAR)=NPV(50)+ PUT(29.98)-CALL 

(41.61)=38.37.  An investment opportunity with only a put is worth 50+29.98=79.98, and with only a 

written call 50-41.61=8.39.  These values are also very sensitive to changes in the parameter values, as 

shown in the Appendix. 

 

EXERCISE 14.1 

Carlos Azevedo owns a solar plant, with an annual revenue R=€ 2, but the generous Portuguese 

government has guaranteed a revenue of € 4 per annum. If r=.04, electricity  =.04, =20%, 

should Carlos try to sell this plant for €100, if ACf11=2.08, ACf22=133.33?    

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       
   

   

 

1

2

11

22

         for R

   for R ,

L
Cf L

Cf

Cf L

R
A R R

r
V R

R
A R R








 

 
  


 

EXERCISE 14.2 

Generous Carlos Azevedo believes his solar plant with an annual revenue R of € 4, might be sold 

with all the revenues over € 15 per annum reserved for the Universidad de Minho. If r=.04, 

electricity  =.04, =20%, should Carlos try to sell this plant for €100, if ACc21=-.5556, ACc32=-

1875?    
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2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       
   

    

 

1

2

21

32

   for 

           for ,

Cc H

Cc

H
Cc H

R
A R R R

V R
R

A R R R
r








 

 
  


 

EXERCISE 14.3 

Clever Carlos Azevedo owning a solar plant with an annual revenue of R=€4 has obtained from 

his friend the Minister of Energy a minimum revenue guarantee of € 4 per annum, but wants all 

revenues over 1000 p.a. to go to the Universidad of Minho. If r=.04, electricity  =.04, =20%, 

should Carlos try to sell this plant for €100, if AC21=-.0083, AC22=133.33?    

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       
   

   

 

1

1 2

2

11

21 22

32

                  for 

   for 

               for .

L
C L

C C C L H

H
C H

R
A R R R

r

R
V R A R A R R R R

R
A R R R

r



 






 




    



 


 

PROBLEM 14.4 

Carlos Azevedo owns a solar plant, with a revenue of €10, but a friendly Portuguese government 

has guaranteed a revenue of €6 per annum. If r=.04, electricity  =.04, =25%, should Carlos try 

to sell this plant for €300?    

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       
   

   

 

1

2

11

22

         for R

   for R ,

L
Cf L

Cf

Cf L

R
A R R

r
V R

R
A R R








 

 
  

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PROBLEM 14.5 

Carlos Azevedo owns a solar plant, with a revenue of €10, but a mean Portuguese government 

has guaranteed a revenue of €2 per annum, and demanded a ceiling of €12. If r=.04, electricity 

=.04, =25%, should Carlos try to sell this plant for €150?    

2

1 1
1 2 2 22 2 2

2
,

r r r 
 

  

    
       
   

   

 

1

2

11

22

         for R

   for R ,

L
Cf L

Cf

Cf L

R
A R R

r
V R

R
A R R








 

 
  


6 

PROBLEM 14.6 

Carlos Azevedo has an opportunity to invest in a monopoly for profit university with an expected 

revenue of €4, with an investment cost of €100.  A smart Portuguese government has guaranteed 

a revenue of €4 per annum, and demanded a ceiling of €10. If r=.04, asset yield  =.04, =25%, 

should Carlos buy this perpetual concession for €20?  See (20) (21) (22) above.    
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APPENDIX       

Figure A2

 

In Figure A2, past the floor price of PL=4, the difference between the VC PV and the VC consists of a long 

position in a put option (should P go below 4) and a short position in a call option (should P rise above 

10=PH).  If P=6, the net value of the put and call is negative, so the VC PV exceeds the VC.  The (VC PV – 

VC) spread increases as P increases up to 10, the ceiling price. 

 

Figure A3 

P 0 1 2 3 4 5 6 7 8 9 10 11 12

VC PV 100.0000 100.0000 100.0000 100.0000 100.0000 125.0000 150.0000 175.0000 200.0000 225.0000 250.0000 250.0000 250.0000

VC 100.0000 101.7862 105.9540 112.0411 119.8462 128.9756 138.3688 147.3733 155.6677 163.0814 169.5199 174.9786 179.6381

FC 0.0000 1.7862 5.9540 12.0411 19.8462 3.9756 -11.6312 -27.6267 -44.3323 -61.9186 -80.4801 -75.0214 -70.3619
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In Figure A3, the ROV Collar (PL=4, PH=10) always has a lower value than a standard ROV without a collar, 

since there is no upper limit to the investment profit, and the investment opportunity is an option, not 

yet a commitment.   Figure A4 

 

In Figure A4, the ROV Collar with a higher price ceiling, in this case PH=20, is more valuable than with the 

previous ceiling of PH=10, and the spread between the ROV with and without collar increases as P 

approaches PH.    Figure A5 

P 0 1 2 3 4 5 6 7 8 9 10 11 12

ROV CALL 0.00 2.75 9.18 18.57 30.61 45.10 61.90 80.90 102.02 125.18 150.00 175.00 200.00

ROV COLLAR 0.00 1.79 5.95 12.04 19.85 28.98 38.37 47.37 55.67 63.08 69.52 74.93 79.28

0.00

50.00

100.00

150.00

200.00

250.00

0 1 2 3 4 5 6 7 8 9 10 11 12

P

The Effect of Price on the ROV with and without Collar

ROV CALL

ROV COLLAR

P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ROV CALL 0.00 2.75 9.18 18.57 30.61 45.10 61.90 80.90 102.02 125.18 150.00 175.00 200.00 225.00 250.00 275.00 300.00 325.00 350.00 375.00 400.00

ROV COLLAR 0.00 2.53 8.42 17.03 28.08 41.10 55.01 69.13 83.10 96.74 109.94 122.63 134.76 146.32 157.28 167.64 177.38 186.51 195.03 202.94 210.23
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What is the affect of increasing volatility of the primary underlying factor on the threshold that justifies 

immediate investment, and also on the ROV (the so-called “vega”).  Naturally the price threshold 

 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ROV CALL 50.00 50.00 50.00 51.51 56.25 61.90 67.69 73.32 78.66 83.65 88.28

ROV COLLAR 50.00 50.18 52.52 56.97 62.51 67.55 70.82 72.03 71.40 69.34 66.30

P^ COLLAR 4.1439 4.7168 5.3681 6.0008 6.6458 7.3178 8.0254 8.7739 9.5670 10.4074 11.2970

P^ 4.1439 4.7724 5.6861 6.7571 8.0000 9.4279 11.0523 12.8831 14.9282 17.1945 19.6873

P 2 PL 3 PH 500
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increases with the increased of expected price volatility shown in Figure A5 (P=2, PL=3, PH=500), so a 

government seeking early investment might consider imposing a collar in a volatile price environment.  

The ROV without a collar increases almost linearly with increases in the price volatility, but the ROV with 

a collar has a different pattern.  From a low volatility environment, the ROV + Collar increases, but 

eventually at high expected volatilities the vega almost becomes negative, due to the increase in the 

value of the written call option. 

 

ACTIVE MODEL GREEKS 

 

Samuelson (1965) established that a call option could replicated by shorting DELTA of the 

underlying asset, and adjusting this position throughout time as the asset changes.  Similarly, the 

floor or ceiling options could be hedged by dynamic positions equal to the floor FDELTA or 

CDELTA, that is the change in the call or put option value as the floor or ceiling changes.  These 

DELTAs are easy to calculate, realising that the DELTA will depend on the Regimes that is 

whether R<RL, or RL<R<RH, or RH<R.   
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CEILING DELTA 

    
1

2

( 1)

1 21

( 1)

2 32

1
   for 

           for ,

Cc H

Cc

Cc H

A R R R
V R

A R R R















 

D  
 

     (A3) 


